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TECHNICAL NOTE

EFFECT OF VARIOUS PARAMETERS INCLUDING MACH NUMBER

ON THE SINGI&DEGREE-OF-FI&EDOM FLUI’TEROF A

CONl?ROLSURFACE IN ~ FLOW

By Harry L. R~an

Various investigations of single-de&e-of-freedom pitching oscil-
lations of a wing in potential flow have been made. However, corre-
sponding studies of single-degree-of-freedomfltiter of a control
surface have not been made. The present Papr demonstratesby theo-
retical calcul&ions that single-degree-of-freedomcontrol-surface
flutter is possible. The effects of structural dsmpimg, aerodynamic
balance, axis of rotation, and compressibility are included.

The mechsm.ismof instability presented here is based on potential-
flow theory and the remilts of such a study are not directly applicable
to separated flow; in addition, certain practical limitations are
discussed.

INTRODUCTION

Flutter of a control surface alone, that is, an unstable oscilla-
tion in which the control surface is effectively rigid and nondeformable
and rotates around its hinge line, has been encountered on *craft in
flight. This phenomenon, as well as stall flutter, is thought to be
associated with sepsrated or ncmpotential flow, although the explanation
is not entirely clear. Flutter of a control surface in one degree of
freedom is possible in potential flow, at least theoretically, and forms’
the mibject of the present paper. The development of this mibject may
possibly contribute to the understanding of the nonpotential-flow
problem.

Theoretical investigations of several types of undamped single-
degree-of-freedom oscillations
recently. For instance, Smilg
the undamped oscillations of a

h potential flow have been reported
(reference 1) has reported a study of
pitching wing in incompressible flow and

.
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2 NACA TN 2551

this study has been extended by Runyan in reference 2 to include the
effect of compressibility. Cumin@am (reference 3) has studied the
undsmped bending oscillations of a swept wing in subsonic flow. The
undsmped pitching oscillations of a wing in supersonic flow have been
studied by a number of investigators, for instance, Garrick and Rubinow
(reference 4), Temple and Jahn (reference 5), and Watkins (reference 6).

The aforementioned papers concern single-degree-of-freedompitching
of a wing or the bending of a swept wing. Sbme examples of centrol-
surface flutter in one degree of freedom ae given in reference 7 along
with a discussion of some possible causes. Apparently no calculation
studies exist demonstratingthe conditions for the existence of single-
degree-of-freedom oscillations of a control surface. Accordingly, the
purposes of this Wper are (1) to show the conditions for the existence
of single-degree-of-freedomoscillations of a control surface based on
potential-flow theory and (2) to e~ ad yresent the effect of various
parameters such as Mach number, fluid density (or altitude), location of
axis of rotation, structural dqing, and aerodynamic balance on this type
of oscillatory instability.

Certain limitations which may affect practical consideration of the
results presented in this paper should be noted: (1) the calculations
are based on two-dimensional aerodynamic coefficients, and the effect
of aqect ratio, which could be appreciable, is not taken into account,
(2) the influence of additional degrees of freedom, which will always
be present in actual configurations,.is not conside~d, and (3) the
effect of finite thickness and shape of the control surface is not
considered, since the control surface has been replaced in theory by
its mean caniberline. In addition to these limitations, the results
of this study are not directly applicable to separated flow, since the
-sis was based on potential-flow theory. Neve~heless, this approach
should provide a basis for co=ison and stu~v and a tide for further
tivestigation.

—

SYMBOIS

b wing half-chord, feet

c location of hinge axis of
balance with respect to
and positive rearward

control surface
midchord poixrt,

without aerodynamic
based on half-chord

c’ location of leading edge of control Surface”with aero&namic
balance with respect to midchord point, based on h~-chord
and positive rearward

.—. —.—
..—. —————
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.

torsional stiffness of control surface about hinge line c

function of ratio of aileron chord to wing chord

location of hinge axis of control surface with aerodynamic
balance with respect to midchord point, based on half-chord
and positive rearward

transcendental functions of k for oscillating plane flow

structuti damping coefficient (figP% Logarithmic decrement)

out-of-phase aerod~amic moment coefficient

total out-of-phase moment coefficient

mass mometi of inertia of control s~face about hinge line
per unit length

~fi aerodynamic moment coefficients for a control surface in
‘compressible flow

reduced-frequency parsmeter (bin/v)

nondimensional.ditiance fqom control-surface axis of rotation
to leading edge of control surface (e - c’)

Mach number

total complex aerodynamic moment on control surface
.

‘ aerodynamic coefficients for a control surface in supersonic
flow

“total inphase moment coefficient

part of inphase aerodmic moment on control surface

control-s~face coefficietis defined in references 8 and 9

flutter velocity, feet per second

control-surface i“otation,measured from wing chord line

------ -- --. —-— --——-~.--— -— . .-...—-— -. -.—.—— _ –-., —.- ——.. . —..



4 NACA TN 2551

P fluid densi~, slugs per cubic foot

co flutter frequency, radians per second

%
natursl frequency of control surface about hinge sxis, radians
per second

ANALYSIS

In this section, the expression for the equilibrium of moments on
a control surface oscillating about its hinge line is given, foXlowed
by a discussion of the aerodynamic mometi for (1) a control surface
oscillating in incompressible flow, (2) a control surface, having aero-
dynamic balance, oscillating in incompressible flow, and (3) a control
surface oscillating in compressible flow.

●

The equation representing the equilibrium of moments per unit
length on a control surface oscillating dbout the h3nge line c is

(1)

where
%

is the mass moment of inertia per unit length of the control

surface aboti its hinge line c, f3 is the angular deflection of the
control surface measured fkom the chord line, gfi is a structural

dsmping coefficient,and Cp is the torsional stiffness of the control
system about c. The quantity Mp is a complex aerodynamic moment,

which is a function, 4 part, of the displacement B} veloci~ b,
acceleration B, reduced-frequency parsmeter k, Mach numiber M, and
location of hinge -s c. The complex notation has been in use in
flutter work for - years because of its convenience, since it contains
both the magnitude of the forces or mommts and the phase with respect
to the displacement. The expression for the aerodynamic moment Mp
is given in reference 8 for a control surface which is Mnged at its
leading edge and oscillating in incompressibletwo-dimensional.flow.
An expression for tke aero@u3mic moment % for an aerodynamically

balanced control surface is given in reference 9. Closed expressions
for ~ for compressible fluid do not etist and values of the aero-

dynamic moment ~ must be obtained by use of tables as given, for

example, in references 10 and 11 for subsonic flow (M < 1) aud in
reference 12 for supersonic flow (M > 1).

.
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Since equation (1) is complex, it can be separated into two corn-‘
ponents as follows:

% + “bB = 0 (2)

‘where ~~ represents the inphase (real) moment coefficient and ~b~

represetis the out-of-phase mometi coefficie~t for the control surface.
Equation (2)-impliesthat both components, lb~ and ~~, must vanish

simultaneouslyfor equilibrium.

The vanishing of the out-of-phase moment ~b~ corresponds to a

borderline condition between damped and undsmped oscillations as was
more fully discussed in reference 2. The flutter frequency may then
be determined frog the inphase (real) mament equation. Thj.sinphase
moment equation ~~ = O may be put-in more convenient form as follows:

.1

(IN= 1‘() (3)
G l-%P1*

where
%’

is proportional to the inphase aerodynamic moment on the

control surface. In the subsequent sections, expressions for ~P

aIld Rb~’ will be given for the vsrious cases.
,

Equations for bcompressible Flow

Control surface without aero-C b~ace.-~ expression for
the aerodynamic moment on a harmonically oscillating control surface
in incompressible flow having no aerodynamic balance may be derived from
reference 8 as

+(T5 )‘r4’rlo P

.

(4)

~m..:. . ....
,:.-—... . ..- ..:.------ ..–--..-..— —-=. —...--.. .,
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where the T coefficietis sre functions only of the hinge position c
and are defined in reference 9. Substitution of equation (4) into
equation (1) and separation into the two components lead to equation (2)

(5)

= o (6)

The inphase (real) moment RbB msy be expressed in the form given by
equation (3) where

r’12 11 2G ‘lo a?
%/= p.p.k .kz

-—— —-— —

)
.>+&

( )
kafipT5 - T4%0 (7)

A numerical or a graphical method is necessmy for the solution of
the out-of-phase moment ~b~ = O since the functions F and G are

trsmcendental functions of l/k. Once the combination of l/k and
F and G that satisfies equation (6) has been determined, the frequency
and flutter speed can be obtained from equation (3) in which the value
of I?@‘ is taken for the same value of l/k that satisfied equation (6).

Control surface with aerodynsmic balance.- The force and moment
on a harmonically oscillating control surface having aero@namic
balance have been derived in reference 9 for incompressible flow. A
control surface havtdg aerodynamicbalance is represented in refer-
ence 9 as fo~ows:

.—. .— .—— ———



NACATN 2551 7

where the dimensions
chord b.

The out-of-phase
from reference 9 as

It@ “ i{> (’19 ‘

c, Ct) eJ and Z are referred to the ‘hslf-

(imaginary) moment coefficient may be

2T27 + 2%3
)(

‘T+ pm 12
)[ (
~T- 2‘T20 m 10

derived

)
-2T~~+

(8)

and the frequency is determined from the iqhase (real)”moment expressed
as equation (3) where

%$ = - >(-,.T3 + 22T2 - 2%5) + &~18 + ZT26 + 2%28) -

(& T12 )[ (lT- 22T20 ~ ~
- 22T& -% - ‘T~ a “))]

The T coefficients are given in the appendix of reference 9 and
all T‘s are functions of c. One exception that needs separate con-
sideration is the term T2Q which is discussed in reference 9. For the

case (over idealized) of a sharp vertical step, the term T28 becomes

infinite; however, for practical configurations cefiain approximations
can be made which permit a finite-value determination of this term.
One such simple a~proximation is given h reference (9) as

C’ =&e+ 3c)

Equations for Compressible Flow

Closed expressions for aerodynamic moment and lift on oscillating
wings and cofirol surfaces in compressible flow do not exist. Aero-

_ic mome~ ~d Iifi coefficients have been calculatedly several.
investigators for various ranges of Mach number and reducbd frequency
and are usually presetied in the form of tables. In reference 10,

.. . . -.-— -.. -- —.. .. —.- .—. ——.. . . . . —..—.—-- .—---—.—— ---- — —— -- —----- --— _.—
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tables of aerodynamic coefficietis sre presented for one aXleron-to-
wing-chord ratio of 15 percent (c = 0.7) for M= 0.7. These tables
are extended in reference 11 to include several aileron-to-wing-chord
ratios of 24,’33, and 42 percent. .

A notation differing from that used in this paper is used in
references 10 and Il.where the inphase (real) moment coefficient of
a control surface is denoted by K~ and the damping (out-of-phase)

moment is denoted by K&. The relation between the coefficients of

this paper and those of references 10 and 11 is given as ‘

where CRR is a function of the ratio of the

chord and is given in reference Il.jp’age16.

‘ (lo) ‘

aileron chord to the wing

In order to obtain a soltiion, it is necess~ to plot K~ %bti

k and determine the value of k at which ~ = O. The frequency is

then given for the same vslue of l/k by

(U)

‘%y’’-c~w~w ~

The results of calculations of aerodynamic coefficietis for a
control “surfaceoscillating in supersonic flow have been reported in
reference 12. The aerodyn&ic moment on the control”surfac~
as

where N5 is the ‘inPhase

phase moment coefficient.
of-phase moment, N6 = o,

moment coefficient and N6 is the

In order to obtain a solution for
the value of l/k at which N6 =

is given

(12)

ou&of -

the out-
0 must be

.

—-— _—__— .- —___ . . . . . . . .__—. .__._—
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.

.

determined. The frequency is then given for the same value of l/k
by

U)2 1()~ ‘1 (13)
4 mpb4 ,

‘N~ITIP

DISCUSSION OF RESULTS
.

In this section, the results of calculationsbased on the expres-
sions previously presented are given. The oscillation of a control
surface in incompressible flow with zero structural damping is discussed
and the effeet of structural damping is introduced. A discussion of
the effect of aerodynamic bshnce and the effect of compressibility
follows.

Flutter of control surface with”zero structural damp- in incom-

pressible flow.- Calculations based on equations (5) and (6) where

i3p= O have been made for various locations of the control-surface
axis of rotation. The results of the computations sxe presented in
figures 1 and 2 for ratios of the control-surface chord to wing chord
of 10 percent, 30 percerrt,50 percent, and 100 percent (c = 0.8, 0.4,
0, and -l).

In figure 1 the flutter-speed parameter v/~ is plotted against

an inertia parameter I@/xPb4. The curves represekt the transition,
for a given llachnumber, from a damped or stable condition to an undamped
or unstable condition. The stable region is below or to the,left of
a curve, and the unstable region is above or to the right of a curve. ~
For small values of the inertia parameter the control surface would be
stable and, if the inertia parameter is increased, for ins@nce by an
increase in altitude, a value equal to the vertical asymptote could be

1~
reached or exceeded. fifigure l(a) (c = 0.8) this value iS ~= 7=X

which increases to 577.7 (fig. l(d)) for c = -1.0, that is, for a
wing oscillat~ about its leading edge. The flutter speed for values

of IPfiPb4 equal to the asymptote is infinite, but a slight increase

in IP@b4 would result in a very rapid decrease in the flutter speed.

For values of IPfipb4 approaching infinity, v/lM@ approaches

a value equal to v/bin at which the oscillation occurs. It should be
noted that the oscillation occurs at a constant value of v/bin, which

I

--- . - - - - -—- . -—— .—— —...— . . . . . ——— —- —-—. ——.——._.. -- . -
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mea.qsthat, no matter what the tiue of the ~~ia Par~eter, the wave
length of the oscillating wake will be the same in the border condition.

The frequency ratio (u/~ )2 is plotted tia~ the ~~i~ Par~-

eter 1~/fipb4 ~ f-e 2 for the same axis-of-rotation locations as

for figure 1. The unstable region is above or to the right of a curve.
The vertical asymptotes are the same as for figure 1, bti the horizontal
asympttie is uni~. This fact indicates tlmt, for very large values of

IP/fipb4, the frequency of oscillation approaches the natural (still air)
frequency of the control surface.

In figure 3, the value of the reduced velocity l/k is plotted
against the location of the sxis of rotation of the control surface.
Note that’the variation of l/k with c is not very l=ge
(25 < l/k < 35), but the values sre considerably higher than experienced
in fluiter W, approach values found in stability work.

In figure 4, the mimimum value of the inertia parameter (vertical
asymptote) at which the oscillation could occur is plotted against
location of control-surface &is of rotation. ~ value of the tifiia
parameter increases as the aileron-to-wing-chordratio increases. Thi8
plot is of particular significance with regard to the zero structural
restr~t case (~ = O). If equation (3) is inverted to obtain

and ~ = O, there is “obtainedthe relation

(14)

which indicates that, if IP/fipb4 is ew to ~~’, an oscillation

is possible. The frequency of oscillation is tk?n a direct function of
the velocity, and flutter can theoretically occur above zero airspeed
as shown by the relation

v ba=—
k

where l/k is the value that satisfied IbB = O. If the value of ~~’

is exceeded by I~fipb4, the cotirol surf=~e is

the transition point ad in the unqtable region.

being operated past

.

.
..
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Flutter of control surface with structural damping in incompressible
flow.- As is often done, the type of dampimg force assumed is one that ‘
is inphase with the velocity ~ but propofiional to the augular dis-
placement p.

The results of computations for one location of the axis of rota-
tion c = 0.7 are presented in figures 5 and 6. h figure 5, the
flutter-speed parameter T/lXl@ is plotted against the inertia parameter.
As ~ted, there is a very large effect of the damping psrsmeter and it
may be that structural damping could be used for eliminating this t~e
of oscillation. In figure 6, the frequency ratio (u/~)2 is plotted
against the inertia parameter. It should be noted that flutter does
not occur (contrary to the case for zero damping) at a constant value
of the reduced speed v/bu as the inertia psrameter is varied. The

values of v/bin and I#xpb4 for several values of the structural
damping coefficient for c = 0.7 sre as follows:

I I I

% 1P 1~ 1~ 1~ Ip
~=m ---J30 g=% --J =75 .--J’1OO

o 34.25 34.25 34.25 34.25 34.25

.01 38.0 44.77 56.1 67.58 77.60

.02 38.80 46.36 58.8 71.50 82.35

.

Flutter of a control surface having aerodynamicc balance and zero

structural dmp~ Calculations have been performed for two control
surfaces by use of”=quations (8) and (9) for two locations of axis of
rotation e but one value of c, and the results me plotted in
figures 7 and 8. In figure 7 the flutter-speed coefficieti is plotted

4 for cagaimt 1~/flPb. = 0.4 and e = 0.55 ~d e = o“750 me
curves are similsr to those obtained without aerodynamic balance, except
that the l~ting value (vertical asy&ptote) appears to be at a larger

value of the abscissa. h fime 8 the frequency ratio (@l# is

plotted against the inertia parameter 1~/fiPb4 for the s~e cases.

The imporlxmt facts to.be noted are (1) that aerodynamic balance
did not eliminate single-degree-of-freedom=ability of a control
surface and (2) that the greater the amount of aero@amic balance, the
higher the limiting value of the inertia parameter at which the oscilla-
tion could begin for this particular case.

\
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Flutter of control surface in compressible flow.- The resuitB of
the calculations based on the equations and tables discussed earlier
are presented in figures 9, 10, &md 11. In figure 9 the flutter-speed
parameter is plotted against the inertia parameter for M = O, 0.7,
ad 10/9. The curves for M = 0.7 and M =

Y
are similar in form

to the curve for M = O, except that the stable range of the inertia
parameter is greatly reduced as the Mach number is increased. Another
effect of increasing Mach number is to reduce the value of the reduced-
velocity coefficient l/k, and this reduction is believed to be s@nifi-
Cant. In figure 10 the frequency ratio is plotted against the inertia
parameter for three Mach numbers M = O, 0.7, and 10/9.

A significant plot is made when the asymptotic value of the inertia
parameter is plotted against Mach number as shown in figure 11. The
relation between the inertia parameter and Mach number appears to be
linear, and the region to the right and above the curve is the unstable
range. This plot, as discussed earlier, is of particular significance
with regard to the control suxface without elastic restraint (~ = O)
and shows that an aileron that is stable in the low Mach number range
could become unsttile in the high @sonic or lower supersonic range.

The asymptotic value of the inertia parameter at M = 0.7 for
several positions of the control-surfacehinge axis is included in
figure 4. The effect of Mach number is again apparent in that increasing
Mach number considerably reduced the value of the inertia parameter for a
given hinge position at which oscillation could occur.

VARIOUS PRACTICAL LIMITATIONS TO THEORY

In general, theoretical control-sur”face derivatives
or unsteady) have not always been in good agreement with

(either Xeady
experiment.

This difference is even more pronounced at the higher aircraft flight
speeds and is partially due to breakdown and separation of the flow
over the rear part of the wing. Since the aerodynamic coefficients
have been derived on the basis of nonviscous, linearized, potetiial flow
for simplified models, and the actual flow is viscous, nonlinear, and
nonpotential, the differences between theory and experiment are not
unexpected. However, studies of control-surface characteristicsbased
on potential-flow theory should provide a basis for the study of the
separated-flowphenomena and provide for a logical grouping of the vari-
ables to be experimetially investigated.

The present calculations have been based on two-~ nsional aero-
_C coefficients ~d ~nce do not t- into accoumt the effect of
aspect ratio. Aspect ratio could have an appreciable effect on this

. .-— .—. — .—
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type of oscillation
a low frequency and

since, for the most part, the oscillations are of
approach the range of stability frequencies. How-

ever, reference 6 shows that the effect of finite aspect ratio for a
pitching wing in supersonic flow reduces but does not eliminate the
instability, and a reasonable assumption is that a similar effect may
be found for the subsonic case.

The influence of additional.degrees of freedom was not considered
in the analysis. Actual configurations will normally have more than
one degree of freedom, but am analysis based on a single-de~ee-of-
freedom system may be an easily obtained limit for cases of cou@ed
flutter. There may, howev&, be circumstances in which only one degree
of freedom is of hportance. Cunningham (reference 3) showed in a
recent paper that a slight relaxing of the condition of infiniie stiff-
ness of another degree of freedom did not appreciably influence the
flutten speed.

Another factor which might be of importance is the thickness of
the control surface. The aerodynamic coefficierrtsused here were based
on the concept of replacing the wing snd control surface by an infinitely
thin mean camber line. The effect of thickness requires further
investigation.

CONCLUSIONS

Single4egree-of-fTeedom-flut-tercd.culations which show theeffects
of various independent parameters, namely, Mach number, location of hinge
axis, aerodynamic balance, and structural damping are presented for a
control surface. The following conclusions may be enumerated:

1. Calculations based on unsteady potential-flow theory indicate
the existence of single-degree-of-freedomflutter of a control surface.

2. Flutter of a control surface alone is more likely to occur for a
configuration operating at high subsonic or low supersonic speeds and at
high altitudes than at low speeds and low altitudes.

3. Structuml damping has a beneficial effect, since
flutter speed appreciably. The use of structural damping
convenient method of eltiinating single-degree-of-freedom

4. The unstable oscillation is still possible if the
is aerodynamicallybalanced.

it raises the
may be a
flutter.

control surface

, /.- —. —...-..—— . —.. -——- -- ————--~————- .. ,
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5. These restits have several practical limitations. Such effects
as separated flow, aspect ratio, coexistence of other degrees of freedom,
and finite thickness of control surface were not considered and could be
Significamb. However, the resuits should prove useful as a basis for
further experimental study.

Langley Aeronatiical Laboratory
National Advisory Committee fqr Aeronautics

=ey Field, Va., August 17, 1951

.
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